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The expansion of topological basis functions for tetrahedral and octahedral boron cage molecules
in terms of an explicit atomic orbital basis is considered. A maximum localisation criteria is used
to define mixing coefficients. The overlap between ‘face’ basis functions in the two geometries is 0.79 and
only a very crude parameter transferability exists. However, some aspects of the relative molecular
orbital energy levels generated with a topological basis appear to be an improvement on those using
an atomic orbital basis.

Die Entwicklung topologischer Basisfunktionen nach einer expliziten Basis von Atomorbitalen
fiir kafigférmige, tetraedrische und oktaedrische Molekiile, die Boratome enthalten, wird untersucht.
Ein Kriterium maximaler Lokalisierung wird zur Bestimmung der Mischungskoeffizienten verwendet.
Die Uberlappung zwischen den Basisfunktionen, die zu den Seiten der beiden Geometrien gehéren,
betragt 0,79, und es existiert nur eine ungefihre Ubertragbarkeit der Parameter. Einige Aspekte der
relativen MO-Energiewerte, die mit einer topologischen Basis gewonnen wurden, stellen eine Ver-
besserung gegeniiber der Verwendung einer Atomorbitalbasis dar.

Développement des fonctions de base topologiques en termes d’une base explicite d’orbitales
atomiques pour des molécules cages de bore tétraédrique et octaédrique. Un critére de localisation
maximum est utilisé pour définir les coéfficients de mélange. Le recouvrement entre les fonctions de
base ‘faciales’ dans les deux géométries est de 0.79 et la transférabilité des paramétres n’est que trés
grossiére. Cependant, certains aspects relatifs des niveaux d’énergic des orbitales moléculaires
engendrées avec une base topologique apparaissent plus satisfaisants que ceux obtenus avec une base
d’orbitales atomiquies.

It is only relatively recently that accurate quantum mechanical calculations
have been performed on the boron hydrides [1]. However, the activity in this
field is such that in the near future all of the important members of the series
will have been studied. When this situation is reached the necessity for a simple
but yet reasonably accurate discussion of the bonding in these molecules will

“ remain. For many years the three-centered bond concept has provided a reasonably
adequate explanation of the closed-shell structure of these molecules and it
seems probable that any refined theory will be based on it. We have recently
attempted such a refinement in formulating a topologically-correct extension of
Hiickel theory to polyhedral molecules [2—4]. Although this treatment falls far
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short of the rigour of a full SCF calculation, it has been found to provide an
acceptable semi-quantitative picture of the molecular orbital structure of the P,
molecule [5]. We may reasonably hope, therefore, that the same situation will
prevail for the boron hydrides. Indeed, a topological basis set may provide a
convenient basis for an SCF treatment, a possibility we are currently exploring.
A necessary first step in this work is to establish the relationship between a
topological and atomic orbital basis and it is this problem which we discuss in
the present paper. It will transpire that there is no unique relationship between
the two bases notwithstanding the fact that the number of variables may be small.
Although it is evident that these variables may be determined as part of an SCF
refinement, in the present paper we use an alternative approach.

In previous papers of this series [2—4] we have discussed the use of either a
three-centre potentially bonding orbital corresponding to a (triangular) polyhedron
face or a two-centre potentially bonding orbital corresponding to a polyhedron
edge, as a basis for a semi-quantitative description of the MO energy level patterns
of the boron hydrides. For these two bases, within a Hiickel-type formalism, one
obtains patterns of molecular orbital energy levels which agree with each other
and with calculations performed using an explicit atomic orbital basis set. For
the case of closed polyhedral (‘cage’) boron hydrides the orbital energies obtained
using the two topological bases are particularly simply related to each other and
we have shown that this is a consequence of their topological relationship [4].

In the present paper we consider the explicit form of the topological basis
sets expressed as linear combinations of atomic orbitals. The discussion we give
is applicable equally to ‘cage’ (closed polybedra) and ‘basket’ (open polyhedra)
boron hydrides. ‘

Consider an orthonormal topological basis set B. This set is related by a
unitary transformation matrix U to the set of orthonormal symmetry-correct
molecular orbitals M which are a solution of the secular problem

UB=M.

The members of the set M are linear combinations of a set of non-orthogonal
symmetry-correct orbitals N, M = TN, where the transformation matrix T is not
unique (vide infra). The set N may be expressed in terms of an atomic orbital
basis 4 by an appropriate transformation matrix V

VA=N
SO
B=U"'TVA. (1)

Given 4, and the molecular geometry, the basis B is defined except for the mixing
coefficients in T. These may be determined by additional, physically reasonable,
constraints. For example, one might impose the condition that the members of B
are as localized as possible. The composition of the edge and face bases is then
determined as are also the explicit forms of the Hiickel energy parameters (and,
of course, matrix elements of a Hamiltonian which explicitly includes electron
repulsion terms).

It is readily demonstrated group theoretically that for the valence orbital set
available for the boron hydrides one cannot define orthogonal face (F) and edge (E)
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bases, a point which distinguishes these molecules from clusters of transition
metal atoms [6,7]. It is physically reasonable therefore, to require that each
basis leads to identical sets of molecular eigenfunctions, insofar as they map
onto each other. This is equivalent to the requirement that corresponding mixing
coefficients be identical in the two transformation matrices, T and Ty.

In view of their non-orthogonality, it is of interest to investigate the overlap
between members of the edge and face bases. It is convenient to replace the non-
orthogonal atomic orbital basis set A by an orthogonalised set D,

D=RA

where the transformation matrix R might be taken as S~%, where 4- A'=S§. We
have that

e;=> CD
and "

fk: ZCI{mDm’

where e; and f} are the j-th ‘edge’ and k-th ‘face’ basis functions and D, and D,
are members of the orthogonalised atomic orbital basis set. It follows that
S(e;, fr) = Z 7. where S(e;, f;) is the overlap integral between e; and f;.

Now,
— e e
e;= Y 5 M
§

and
=2 5Dy,
n

where My is a molecular orbital of symmetry species s, the coefficients cf; being
symmetry determined.
If follows that,

= ZZC;S'C;!
s n

=3 Y cl-c,
s n

and, similarly,

Hence,
S(ejb fk) Z z C]s sn cks Z Z (cjscks) {n) . (3)

Consider the second bracket in (3). If we arrange the symmetry adapted functions
derived from ‘edge’ and ‘face’ bases so that there is an ordered 1:1 mapping
between them (putting all ¢/, = 0 when a function in the edge basis does not have
a counterpart in the face basis, and vice versa), then if both ‘edge’ and ‘face’ bases
are to lead to identical eigenfunctions we require that c¢, = c/,, provided that

neither is zero. In the latter case the product c&, - cf, makes no contribution to
the summation (3). It follows that

Z ¢g,cl, =1 for all symmetry species, s, subtended by both bases (normalization)

16*
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(3) becomes

S(ej,fk)"_‘ ZC?S'C{S. (4)
Eq. (4) shows that when edge and face bases lead to identical molecular eigen-
functions the overlap between the two bases is independent both of the mixing
coefficients in T and of the basis set 4; it is an invariant of the system. This arises
because, for example, if the mixing coefficients are cos 8 and sin6, expression (4)
leads to a summation in which 6 appears as the factor (cos? 0 + sin?6).

Because of Eq.(4) we shall only consider ‘face’ topological basis sets in the
present communication.

We have used Eq. (1) to analyse the ‘face’ bases of the B, tetrahedron and B
octahedron. These species are the simplest polyhedra to which the theory may
be applied and, although particular examples, provide an indication of the
transferability of the topological coulomb and resonance integral parameters,
o and f. It should be noted that for these two species the requirement that the
members of each basis are as localised as possible leads to the complete localization
of each member in a corresponding face.

We have chosen to work with Slater-type atomic orbitals since the consequent
overlap integrals are very similar to those obtained for SCF functions. The boron-
boron internuclear distance has been taken as constant at 1.70 A.

Results

The expansion of a topological ‘face’ orbital in terms of its atomic orbital
componentsis given in Table 1 for tetrahedral and octahedral cases. The calculation
of these values is detailed in an Appendix. These expansions, together with the
assumption of coulomb integrals o, (B) = — 154, a, ,(B) = — 8.6, 3,(B) = — 1.0 eV
[8] and resonance integrals given by f;; = KS;;, K= —21 eV leads to the para-
meters values a,,, = — 12.2 eV, a,,, = —14.7eV, f,,=—2.6 eV and f,,=—19eV.
A comparison between the molecular orbital energy level sequences obtained
using these values and those found by Lipscomb et al. [9] (using identical values
for the atomic orbital coulomb and resonance integral parameters) is given in
Table 2.

The overlap integral between members of the two basis sets was found to
be 0.79, evaluated by transforming the tetrahedral basis set onto octahedral axes.

Discussion

It is probable that the difference between localised three-centre ‘face’ orbitals
in the octahedron and tetrahedron will be greater than that for closely related
molecules, such as those ‘basket’ boron hydrides which are icosahedral ‘fragments’.
For instance, a boron s-orbital participates in four ‘face’ orbitals in the octahedron
but in only three in the tetrahedron. One consequence of this difference is the
considerable d-orbital participation found for the octahedron. The difficulty in
choice of coulomb, resonance and overlap integrals appropriate to d-orbital
interactions is reflected in the a,, and f,, values. Even so, the data, coupled

oct
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Table 1. The topological ‘face’ A orbitals in terms of atomic orbital components for the tetrahedron

(atoms 2,3 and 4) and octahedron (atoms 1,2 and 3); 6 = Vl_i— (s+p,)
Tetrahedron Octahedron
0.3966 oy
g, 0 0.3966 o,
o, 0.3710 0.3966 04
g3 0.3710 0 O4
04 0.3710 0 o5
0 Gg
—0.6520 iy
0 77:2;:
—0.6520 T3y
T1p 0 0 gy
oy —0.7341 0 sy
T3y —0.3671 0 Mg
Tay —0.3671 ~0.6520 i,
—0.6520 Ty
0 T3y
0 T4y
Ty 0 0 T3y
Top 0 0 Ty
s, 0.6358 0 Ty,
Mgy ~0.6358 0.6520 Ty,
0.6520 73,
0 Tsz
0 s,
0 Moy
0.8166 4,
0.8166 4,
0.8166 d5
0 84
0 ds
0 P

Table 2. Face orbital energies (eV) for the B¢ octahedron and the B, tetrahedron

Ref. [9] This work

Octahedron

Ay, — 44
E, 68.2

Ty — 26

Toy —13.8 — 9.6
T —159 —14.8
Ay, —-183 -20.0
Tetrahedron

E —-10.6

T, —14.7 —-12.8
A, -17.5 -20.4
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with the overlap integral of 0.79 between ‘face’ orbitals in the two bases, is good
enough to make it clear that only a very crude transferability exists between the
two systems. That is, there may be significant differences between the ‘three-
centred bonds’ appropriate to different polyhedral systems. Granted that this is
so, the question remains of whether topological bases provides a useful semi-
quantitative picture of the bonding in the boron hydrides. Table 2 is of interest
in this connection. In this table we compare the molecular orbital energy-level
sequence found by Longuet-Higgins and Roberts and Hoffman and Lipscomb,
who used an explicit AO basis, respectively, for an octahedron and tetrahedron
of boron atoms. Our approach predicts a larger energy separation between the
molecular orbital energies with agreement between the two methods on their
relative order. In order to compare our results with theirs we haveused e = — 10.4eV
and K = — 21 eV in evaluating their orbital energies using E = —T—+—§—>—C—. This
value of « (assumed identical for s and p-functions) is the weighted mean of the
values of a,, and a,, used in our own calculations. This procedure is in no way
responsible for the large positive energy at which the explicit AO basis method
places the lowest molecular orbital of E, symmetry in the octahedron. This
energy is the more disturbing in that Hoffman and Gouterman in their electron
on a perturbed sphere model do not distinguish between the energy of this function
and the T,,, which is found to have an energy of —13.8¢V. In that our MO
energies are all negative (and one would expect this statement to be generally
true) the three-centered bond approach seems to be preferable. Because of the
small size of the basis set, some low lying virtual molecular orbitals are not
generated by the method. This will undoubtedly be of importance in attempts to
use the basis in an SCF treatment.

We conclude that the simple concept of localised three-centre bonding
orbitals provides a useful description of the bonding in the polyhedral boranes
and may, at some points, be better than a description using a larger atomic
orbital basis set. For the next stage in the development, it would be particularly
useful if a method can be found of evaluating electron repulsion integrals over
topological basis sets without a formal transformation back to an atomic orbital
basis. We are currently investigating this problem.

Acknowledgements. 1t is a pleasure to acknowledge the cooperation of Dr. V. Tomlinson, who
made a preliminary investigation of this problem. This work was assisted by a grant from the Science
Research Council (to D.J.R.).

Appendix
a) Tetrahedral Basis

Representative boron group orbitals are detailed in Table 3, using the axes
shown in Fig. 1. The explicit form of the overlap integrals included in Table 3
are given in Table 4, where it has been assumed that

oy= _1}7 [s(m) + p.()]
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Table 3

a,(0) 1/Ny(o,+0,+0;5+0,)
ty(0)  1/Ny(gy+06,—05—0y)
1(m)  1/N3(my, + 73, + T30 + 74,)
e(m) 1 Ny(my,+ 7, — 73 — Ty,)
where:
N, =2[1+438,]¢ S, =|
N, =2[1-5} Szzj.”n‘“zu‘d"f'
Ny;=2[1+8,+28,]* S3=I
Ny=2[1+8,-281%

_f—-ﬂh

wﬂv

Fig. 1. Representative orbitals for the tetrahedron

Table 4
81 =3[8,(5,5)+2 /% 5,(s, p) +1S.(p, p) + 25,(p, p)]
S, =3[S,{p, p) +2S.(p, )]
S3 = '11_2[7S7t(ps p) - Sa(p’ p)]

The required linear combination of the boron t, functions is of the form

1

Y(t)= A Tsn20-S,° [cos8 - p(T5, 0) +sin0 - (T, n)]
4
where
25,
S4 = 1 1
(1—=S)(1+S,+28,)3
and

1 1 1
Se=——58_(s, —S,(0.0)— —S.0,p).
=% a(SP)+3 (@.p) 3 (@, p)
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The final expression relating the face bases {(A4), (B),(C), (D)}, where (A) is
the function corresponding to the face defined by the atoms 2, 3, and 4 is

Oy
g2
703
G4
A cddd e f h h o o —g g\| n,
By [dddc f e h h o o g—g T,
cl \dded-h —j —e —f g—g o o T3y
D dcdd —-h —h —f —¢e —g g o o}| ng,
Tin
ok
Tap
where Tan
o ) 32 2
2N, 2N, )’ 2\ N, Ng )’ N
i) = 28 et
2N, 2N, 2\ N, Ne N;
cosf sinf

= T T T A e i b = DY RN
= A+sm20- S, (1 +sin20-8,)
Ng=[8—-6S85—28,]*
and
S6 = - S‘I‘E(p’ p) .
The condition of zero contribution of orbitals centered on atom 1 leads to the
condition that

1 3cos6
— + - - =0
N1 (1+Sln20’S4)2'N2
whence
0 = 84°20'
and
c=0 f=-—07341
d=0.3710 g=—10.6358
e=0 h=—-0.3671.

b) Octahedral Basis

Representative functions of the boron group orbitals are detailed in Table S,
and the explicit form of the overlap integrals are given in Table 6. Fig. 2 denotes
the axes used. Again it has been assumed that

6= 715— (5(m) + p.(r)
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Table 5

a,(o)=1/N (6;+0,+03+0,+05+ 0¢)

e, (0) =1/N; (0, ~03—0,—05)
t1.(0) =1/N3 (6, ~0¢)

t1,(m) = 1/Ny (Tay + 732 + Tap + Ts2)
ta,(m) =1/Ns (s + Mgy — T3, — Way)

t34(0) =1/Ng (8, +6¢)

t1(m) =1/Ny (figy + Ms— Tay ~ Max)
() =1/Ng (723 ~ T3 + Mgy — Ts2)
a3,(8) =1/Ng (81— 6, — 03+ 0, + 05— )

eu(d) =1/Nyofd,— 85— 04+ 5).
where N, = ]/3(1 +48, +S,)%

N,
N;
Ny
Ns

Il

I

[}

2(1 —28,+ S,
V2(1-8y)*
2(1+28;+8,)F
2(1+28,— S,
V2(1+Sg)
2(1-285—8,)F
1(1—28;+8,)%
1/6(1+4S, -85
2(1-28, - Sy)f

S.={0, 0,de
S,= [0 04d1

SS = jnlx : 7r3::‘11:
Sa= _‘.nlx ) nﬁxd‘t
Ss= {0, mpdt
Se= [Ty may-dt
S;=[68,0,dz
Sg=[06,8¢dt
So=[8; msdt

Table 6 *

Sy =3[S,(5,8) + /2 5,5, p) + [S,(p, p) + S.(p, P)T] -

Sy =3[S,(s, 5) +28,(s, p) + S;(p, p)]

S3 = Sn(p’ p)
84=5.(p, p)

s—zJ— V2 8,(5, p) + S,(p, ) + S, )]
5™ '/E[ D.S,p) o sp T 7p
S =%[8,(p, p)+ S:(p, P)]
87 =3[8.(d, d) + S;(d, d)]
Ss=38;(d, d)

1
59=—53n(p,d)

* S8, S; overlaps refer to a boron-boron internuclear distance of 1.7 A. S, S, S; refer to those

Fig. 2. Representative axes for octahedron

247



248

The required linear combination of the boron t,, functions is of the form

where

YO W

where

S.F. A. Kettle and D.J. Reynolds:

1

Y(ty,) = (1+sin26-8,,)

4S;

Si0= T n

V2(1—5)%- (14285 +5,)°
and those for the t,, functions '
(t29) = [cos ¢ - (T4, m) +sin ¢ - (T, )]

where we have assumed that | (T, ) (T,, §)dt =0.
The final expression relating the face basis {(A), (B), (C), (D), (E), (F)}, where (A)
is the function corresponding to the face defined by the atoms 1,2, and 3, is

eeefff —ho—hogg
efeeff hoh—o—g—g
effeef ho—goh—g
eeffef —hogo—hg
feeffe go—hog—h
[feefe —goho—gh
fifeee —go—gohh
feffee gogo—h—h

1 a
A A

1 a
TN TN
o= 24 C

N Ny

b ¢
S AR
k=2 L

NlO N9
=2 L

NlO N9 '

cosf

(1 +5sin28-S,,)*

sin @

b= (1 +sin20 - S,
c=cos¢
d=sin¢

—h—hogog

~h—go—hog

h—goho—g
hho—-go—g
g—hogo—h
9go—ho—h
—g~—gohoh
—gho—goh

ohh—g—go

o—gh—h—go

0—g—ghho
oh—g—gho
o—h—hggo
og—h—hgo
ogg—h—ho
o—hgg—ho

Y [cos@ - p(T;,, 6) +sinf - p(Ty,, n)]

kkklll
klkkll
kllkkl
kklikl
Ikkllk
lkkik
llkkk
Ikllkk
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Tex
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The condition of zero contribution of orbitals centred on atom 4, 5, and 6 to (A)
leads to values of & and ¢ of

6 =76°44" and ¢ =36°0
whence e=0.3966
f=0
g=0
h=0.6520
k=0.8166
=0.
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