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The expansion of topological basis functions for tetrahedral and octahedral boron cage molecules 
in terms of an explicit atomic orbital basis is considered. A maximum localisation criteria is used 
to define mixing coefficients. The overlap between 'face' basis functions in the two geometries is 0.79 and 
only a very crude parameter transferability exists. However, some aspects of the relative molecular 
orbital energy levels generated with a topological basis appear to be an improvement on those using 
an atomic orbital basis. 

Die Entwicklung topologischer Basisfunktionen nach einer expliziten Basis von Atomorbitalen 
ffir k~ifigf6rmige, tetraedrische und oktaedrische MolekiJle, die Boratome enthalten, wird untersucht. 
Ein Kriterium maximaler Lokalisierung wird zur Bestimmung der Mischungskoeffizienten verwendet. 
Die (Jberlappung zwischen den Basisfunktionen, die zu den Seiten der beiden Geometrien geh6ren, 
betrggt 0,79, und es existiert nur eine ungef~ihre Ubertragbarkeit der Parameter. Einige Aspekte der 
relativen MO-Energiewerte, die mit einer topologischen Basis gewonnen wurden, stellen eine Ver- 
besserung gegenfiber der Verwendung einer Atomorbitalbasis dar. 

D~veloppement des fonctions de base topologiques en termes d'une base explicite d'orbitales 
atomiques pour des mol6cules cages de bore t6tra6drique et octa6drique. Un critbre de localisation 
maximum est utilis6 pour d6finir les co6fficients de m61ange. Le recouvrement entre les fonctions de 
base 'faciales' dans les deux g6om&ries est de 0.79 et la transf6rabilit6 des param6tres n'est que tr~s 
grossi~re. Cependant, certains aspects relatifs des .niveaux d'6nergie des orbitales mol6culaires 
engendr6es avec une base topologique apparaissent plus satisfaisants que ceux obtenus avec une base 
d'orbitales atomiques. 

It is only relatively recently that accurate quantum mechanical calculations 
have been performed on the boron hydrides [1]. However, the activity in this 
field is such that in the near future all of the important members of the series 
will have been studied. When this situation is reached the necessity for a simple 
but yet reasonably accurate discussion of the bonding in these molecules will 
remain. For many years the three-centered bond concept has provided a reasonably 

adequate  explanation of the closed-shell structure of these molecules and it 
seems probable that any refined theory will be based on it. We have recently 
attempted such a refinement in formulating a topologically-correct extension of 
Hfickel theory to polyhedral molecules [2-4]. Although this treatment falls far 
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short of the rigour of a full SCF calculation, it has been found to provide an 
acceptable semi-quantitative picture of the molecular orbital structure of the P4 
molecule [5]. We may reasonably hope, therefore, that the same situation will 
prevail for the boron hydrides. Indeed, a topological basis set may provide a 
convenient basis for an SCF treatment, a possibility we are currently exploring. 
A necessary first step in this work is to establish the relationship between a 
topological and atomic orbital basis and it is this problem which we discuss in 
the present paper. It will transpire that there is no unique relationship between 
the two bases notwithstanding the fact that the number of variables may be small. 
Although it is evident that these variables may be determined as part of an SCF 
refinement, in the present paper we use an alternative approach. 

In previous papers of this series [2-4] we have discussed the use of either a 
three-centre potentially bonding orbital corresponding to a (triangular) polyhedron 
face or a two-centre potentially bonding orbital corresponding to a polyhedron 
edge, as a basis for a semi-quantitative description of the MO energy level patterns 
of the boron hydrides. For these two bases, within a Htickel-type formalism, one 
obtains patterns of molecular orbital energy levels which agree with each other 
and with calculations performed using an explicit atomic orbital basis set. For 
the case of closed polyhedral ('cage') boron hydrides the orbital energies obtained 
using the two topological bases are particularly simply related to each other and 
we have shown that this is a consequence of their topological relationship [4]. 

In the present paper we consider the explicit form of the topological basis 
sets expressed as linear combinations of atomic orbitals: The discussion we give 
is applicable equally to 'cage' (closed polyhedra) and 'basket' (open polyhedra) 
boron hydrides. 

Consider an orthonormal topological basis set B. This set is related by a 
unitary transformation matrix U to the set of orthonormal symmetry-correct 
molecular orbitals M which are a solution of the secular problem 

U B = M .  

The members of the set M are linear combinations of a set of non-orthogonal 
symmetry-correct orbitals N, M = TN, where the transformation matrix T is not 
unique (vide infra). The set N may be expressed in terms of an atomic orbital 
basis A by an appropriate transformation matrix V 

VA = N 
so 

B =  U - ~ T V A .  (1) 

Given A, and the molecular geometry, the basis B is defined except for the mixing 
coefficients in T. These may be determined by additional, physically reasonable, 
constraints. For example, one might impose the condition that the members of B 
are as localized as possible. The composition of the edge and face bases is then 
determined as are also the explicit forms of the Hfickel energy parameters (and, 
of course, matrix elements of a Hamiltonian which explicitly includes electron 
repulsion terms). 

It is readily demonstrated group theoretically that for the valence orbital set 
available for the boron hydrides one cannot define orthogonal face (F) and edge (E) 
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bases, a point which distinguishes these molecules from clusters of transition 
metal atoms [6, 7]. It is physically reasonable therefore, to require that each 
basis leads to identical sets of molecular eigenfunctions, insofar as they map 
onto each other. This is equivalent to the requirement that corresponding mixing 
coefficients be identical in the two transformation matrices, T F and Te. 

In view of their non-orthogonality, it is of interest to investigate the overlap 
between members of the edge and face bases. It is convenient to replace the non- 
orthogonal atomic orbital basis set A by an orthogonalised set D, 

D = R A  

where the transformation matrix R might be taken as S -~, where A �9 A t= S. We 
have that 

ej = E C~nDn 
I,l 

and 
fk = E CLDm, 

I n  

where ej and fk are the j-th 'edge' and k-th 'face' basis functions and D, and D,, 
are members of the orthogonalised atomic orbital basis set. It follows that 
S(ej, fk) = ~ CF~, " C~ where S(ej, fk) is the overlap integral between ej and fk. 

tl 

Now, 
ej = ~ cjes Me 

s 

and 
M: Z = C s n D  n , 

n 

where Mj  is a molecular orbital of symmetry species s, the coefficients cj~ being 
symmetry determined. 

If follows that, 
G Y Z  e c̀ 7. = C j s .  e 

,7 n 

and, similarly, 

Hence, 

G = s s 4 . 4 .  
s n 

e e e f e f S(ej, fk)= ~ E c j ~ ' G , ' c [ ~ ' c [ ,  = ~,,~(cj~ck~) "(G~G,). (3) 
s n s n 

Consider the second bracket in (3). If we arrange the symmetry adapted functions 
derived from 'edge' and 'face' bases so that there is an ordered 1" 1 mapping 
between them (putting all c{n = 0 when a function in the edge basis does not have 
a counterpart in the face basis, and vice versa), then if both ~ and 'face' bases 
are to lead to identical eigenfunctions we require that cs~ = c ys., provided that 
neither is zero. In the latter case the product c~,. c{, makes no contribution to 
the summation (3). It follows that 

e f G,c~, = 1 for all symmetry species, s, subtended by both bases (normalization) 
n 

I6"  
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(3) becomes 

S(ej ,  f k ) =  ~ cj e "  e L .  (4) 
$ 

Eq. (4) shows that when edge and face bases lead to identical molecular eigen- 
functions the overlap between the two bases is independent both of the mixing 
coefficients in T and of the basis set A; it is an invariant of the system. This arises 
because, for example, if the mixing coefficients are cos 0 and sin 0, expression (4) 
leads to a summation in which 0 appears as the factor (cos20 + sin z 0). 

Because of Eq. (4) we shall only consider 'face' topological basis sets in the 
present communication. 

We have used Eq. (1) to analyse the 'face' bases of the B4 tetrahedron and B 6 
octahedron. These species are the simplest polyhedra to which the theory may 
be applied and, although particular examples, provide an indication of the 
transferability of the topological coulomb and resonance integral parameters, 

and ft. It should be noted that for these two species the requirement that the 
members of each basis are as localised as possible leads to the complete localization 
of each member in a corresponding face. 

We have chosen to work with Slater-type atomic orbitals since the consequent 
overlap integrals are very similar to those obtained for SCF functions. The boron- 
boron internuclear distance has been taken as constant at 1.70 A. 

Results 

The expansion of a topological 'face' orbital in terms of its atomic orbital 
components is given in Table 1 for tetrahedral and octahedral cases. The calculation 
of these values is detailed in an Appendix. These expansions, together with the 
assumption of coulomb integrals ~E~(B) = - 15.4, ~2p(B) = - 8.6, ~3d(B) = -- 1.0 eV 
[8] and resonance integrals given by flij = K S i j ,  K = - 21 eV leads to the para- 
meters values ~oct = - 12.2 eV, ~tet = - -  14.7 eV, floct = - 2.6 eV and fltet = - 1.9 eV. 
A comparison between the molecular orbital energy level sequences obtained 
using these values and those found by Lipscomb et al. [9] (using identical values 
for the atomic orbital coulomb and resonance integral parameters) is given in 
Table 2. 

The overlap integral between members of the two basis sets was found to 
be 0.79, evaluated by transforming the tetrahedral basis set onto octahedral axes. 

Discussion 

It is probable that the difference between localised three-centre 'face' orbitals 
in the octahedron and tetrahedron will be greater than that for closely related 
molecules, such as those'basket'  boron hydrides which are icosahedral 'fragments'. 
For instance, a boron s-orbital participates in four 'face' orbitals in the octahedron 
but in only three in the tetrahedron. One consequence of this difference is the 
considerable d-orbital participation found for the octahedron. The difficulty in 
choice of coulomb, resonance and overlap integrals appropriate to d-orbital 
interactions is reflected in the ~oct and floct values. Even so, the data, coupled 
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Table 1. The topological 'face' A orbitals in terms of atomic orbital components for the tetrahedron 
1 

(atoms 2, 3 and 4) and octahedron (atoms 1, 2 and 3) ; a = - ~  (s + p~) 

Tetrahedron Octahedron 

a l  0 

a 2 0.3710 
a a 0.3710 

a4 0.3710 

~lv 0 
~2v --0.7341 
~3v -0.3671 
~4~ -0.3671 

g l h  0 

~2h 0 
nSh 0.6358 
n4h -0 .6358 

0.3966 a l  

0.3966 a2 
0.3966 a 3 

0 64 
0 6 s 
0 66 

-0 .6520 nix 

0 ~2x 
-0 .6520 ~ax 

0 ~4x 
0 ~Sx 
0 n6x 

-0 .6520 nlr  

- 0.6520 n2y 
0 nay 

0 ~4y 
0 ~5y 
0 ~6y 
0 ~lz 

0.6520 n2~ 
0.6520 ~3~ 

0 n4z 

0 ~Sz 
0 ~6z 

0.8166 61 
0.8166 62 
0.8166 63 

0 64 

0 65 
0 66 

Table 2. Face orbital energies (eV) for the B 6 octahedron and the B 4 tetrahedron 

Ref. [9] This work 

Octahedron 

A2u 
Eg 68.2 
Tzu - 2.6 
T2g - 13.8 
T1. - 15.-7 

AIo -18 .3  

Tetrahedron 

E -10 .6  
T z - 14.7 
A 1 -17 .5  

- 4 . 4  

- 9.6 
-14 .8  
- 20.0 

-12 .8  
- 2 0 . 4  
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with the overlap integral of 0.79 between 'face' orbitals in the two bases, is good 
enough to make it clear that only a very crude transferability exists between the 
two systems. That is, there may be significant differences between the 'three- 
centred bonds' appropriate to different polyhedral systems. Granted that this is 
so, the question remains of whether topological bases provides a useful semi- 
quantitative picture of the bonding in the boron hydrides. Table 2 is of interest 
in this connection. In this table we compare the molecular orbital energy-level 
sequence found by Longuet-Higgins and Roberts and Hoffman and Lipscomb, 
who used an explicit AO basis, respectively, for an octahedron and tetrahedron 
of boron atoms. Our approach predicts a larger energy separation between the 
molecular orbital energies with agreement between the two methods on their 
relative order. In order to compare our results with theirs we have used a = - 10.4 eV 

- c ~ - K x  
and K = - 21 eV in evaluating their orbital energies using E = . This 

l + x  
value of a (assumed identical for s and p-functions) is the weighted mean of the 
values of c~2~ and a2p used in our own calculations. This procedure is in no way 
responsible for the large positive energy at which the explicit AO basis method 
places the lowest molecular orbital of Eg symmetry in the octahedron. This 
energy is the more disturbing in that Hoffman and Gouterman in their electron 
on a perturbed sphere model do not distinguish between the energy of this function 
and the T2o, which is found to have an energy of -13 .8  eV. In that our MO 
energies are all negative (and one would expect this statement to be generally 
true) the three-centered bond approach seems to be preferable. Because of the 
small size of the basis set, some low lying virtual molecular orbitals are not 
generated by the method. This will undoubtedly be of importance in attempts to 
use the basis in an SCF treatment. 

We conclude that the simple concept of localised three-centre bonding 
orbitals provides a useful description of the bonding in the polyhedral boranes 
and may, at some points, be better than a description using a larger atomic 
orbital basis set. For  the next stage in the development, it would be particularly 
useful if a method can be found of evaluating electron repulsion integrals over 
topological basis sets without a formal transformation back to an atomic orbital 
basis. We are currently investigating this problem. 

Acknowledgements. It is a pleasure to acknowledge the cooperation of Dr. V. Tomlinson, who 
made a preliminary investigation of this problem. This work was assisted by a grant from the Science 
Research Council (to D.J.R.). 

Appendix 
a) Tetrahedral Basis 

Representative boron group orbitals are detailed in Table 3, using the axes 
shown in Fig. 1. The explicit form of the overlap integrals included in Table 3 
are given in Table 4, where it has been assumed that 

1 
a~ = ~ Is(n) + p~(n)] . 

V z 



a~(G) 
t2(~) 

e(~) 

where: 

N~ = 211 + 3S~] * 
N2 = 2 [1 - S~] ~ 
N 3 = 2[-1 + S 2 + 2S3] �89 
N 4 = 2 [1 + S 2 - -  2S33 ~ 

Table 3 

1/N1(61 + 0" 2 + 0" 3 "k o'4) 

l / N 2  (o" 1 -b o" 2 - o" 3 - o"4) 
1/N3(nl. + n2~ + n3o + ~4~) 
1/N4(rq~ + n2, - n3o - rc4~ ) 

] 

2 

S 1 = ~ 0"10"2d'c 

82  ~ ~ ~ l v  " ~2v " d 'c 

83 ~ ~ ~lv " ~3v d'c 
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7/" v 

Fig. 1. Representative orbitals for the tetrahedron 

Table 4 

s~ = �89 [ So(s, s) + 21/~" S,(s, p) + �89 s~(p, p) + ~ SAp, p)] 
s2 = �89 p) + 2s~(p, p)] 
s3 = ~[7SAp, p) - SAp, p)] 

T h e  r e q u i r e d  l i nea r  c o m b i n a t i o n  o f  the  b o r o n  t 2 func t ions  is o f  the  f o r m  

w(t2) = 
1 

(1 + s i n 2 0  �9 $4) ~ [ c o s 0 .  ~p(T:, a) + s i n 0 .  ~p(T2, n)] 

whe re  

a n d  

54.  
2Ss  

( 1  - -  S 1 )  ~ ( 1  -I- 8 2 dr- 2S3) ~ 

1 1 S 1 S 
s5 = - ~ -  s~(~, p) + 5- ~(p' p ) -  5- ~(p' p )  
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The final expression relating the face bases {(A), (B), (C), (D)}, where (A) is 
the function corresponding to the face defined by the atoms 2, 3, and 4 is 

where 

(i) (i e h h ~ !) d d c  f e h h o o g - 

d c d - h  - j  - e  - f  g - g  o 

c d d - h  - h  - f  - e  - g  g o 

~ =  § , e =  - ~  , 

d =  2N1 2N 2 ' f = 2 -  -~-3 + - ~ - - 6  ] ' 

cos 0 sin 0 
a =  b =  

(1 + sin20. $4) ~ (1 + sin20. $4) ~ ' 

N 6 = [ 8 - 6 S  6 -  2 S 2 ]  �89 

g =  m 

h _  

and 

al \ 

O" 2 

(7 3 

if4 

~ l v  

~2v 

1/73v 

~4v 

~2h 

~3h 

u~ 

b 
�90 

S 6 = _ S~z(p , p ) ,  

The condition of zero contribution of orbitals centered on atom 1 leads to the 
condition that 

1 3cos0 
- - +  = 0  
N1 (1 + sin20 �9 $4) -~- N2 

whence 

and 

0 = 84~ , 

c = 0 f = - 0.7341 

d =0.3710 g = - 0.6358 

e = 0  h = - 0 . 3 6 7 1 .  

b) Octahedral Basis 

Representative functions of the boron group orbitals are detailed in Table 5, 
and the explicit form of the overlap integrals are given in Table 6. Fig. 2 denotes 
the axes used. Again it has been assumed that 

1 
~. = ~ ( s (n)  + p z ( n ) )  . 

V z 
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Table 5 

alg(a) = 1/NI (al  + ~2 + a3 + a4. + as + o'6) 
% (o') = 1/N2 (a2 - o.3 - a4. - o.,) 
h.(o.) = 1/N3 (,~ - o'~) 
t l u ( X  ) = 1/N4 (7~22 -/- 7~32 -{- //;4-2 @ 7~52) 

t2o(X ) = 1INs (rc5~ + x4.y -- 7r - -  n2y ) 
t2g(r ) = 1/N6 (oh + 66) 
t ~ ( z )  = 1/N~ (~2~ + 7r~. -  ~ , ,  - ~ )  
tz,,(TZ) = 1INs (7~22 - 7~a2 "~- ~4.2 - -  n52 )  

a2u(~) = 1IN9 (~1 -- ~2 -- ~3 + ~4. + ~5 -- ~6) 
e.(6) = 1/N10(62 - 33 - 64. + 6s)" 

where N1 = V 6 ( 1 + 4 S 1 + $ 2 )  ~ 
N2 = 2 ( 1 - 2 S ~ + $ 2 )  * 
N~ = ~ (~ - s #  
N 4 = 2 (1 + 2 S  a + 84) ~ 
N 5 = 2 (1 + 2 8 6 -  $4) ~ 
N 6 = ] /~  (1 + Ss) ~- 
N v = 2 ( 1 - 2 S  6 -$4 . )  ~ 
N 8 = 1 ( 1 - 2 S  3 + S 4 )  ~ 
U 9 ]/@ (1 + 4S 7 -- Ss) ~ 
Nlo = 2 ( 1 - 2 S : ~ - $ 8 )  r 

S l = ~ a x . a 2 d z  
$2 = ~ a l a 6 d  "c 
$3 = ~ lrlx �9 ~r3xdz 

$4 = ~ Ztlx" x6xdZ 
$5 = ~ O.1 " 7~22d'c 
$6  = S X5x"  X4Y ' dz  
$7 = ; 3 1 6 , d z  
Ss = ~ 6136d'r 
$9 = S 61 �9 rs~,d'c 

Table 6 a 

s~ =~[ Sds, s) + 1/~ s,~(s, p) + k[s~ p) + s.(p, p)]] �9 
s~ = ~[So(s, s) + 2S~(s, p) + SAp, p)] 
s~ = s~(p, p) 
s ,  = S'dp, p) 

1 
s~ = 2 - ~  [ ~  S~(s, p) + s~(p, p) + s~(p, p)] 

$6 = �89 p) + S,~(p, p)] 
S 7 = �89 d) + S~ (d, d)] 
S s = SA (d, d) 

1 
sg = ~ SAp, a) 

a S~, S~, S~ overlaps refer to a bo ron -boron  internuclear distance of 1.7 A. S'~, S'~, S'~ refer to those 

of ]//2 x 1.7 A. 
Z 

1 

y x 

6 

Fig. 2. Representative axes for octahedron 
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The required linear combination of the boron t l .  functions is of the form 

1 
~P(tlu) = (1 + sin20. $1o) ~ [cosO. ~ ( r l .  , o') +sinO- ~o(rl., re)] 

where 
4Ss 

$1~ = V-2 (1 - s z )  ~ .  (1 + 2s3 + $4) ~ 

and those for the teo functions 

(tzo) = [cosq5. ~p(T2g, ~) + sin 4). ~p(Tzg, 6)] 

where we have assumed that ~ ( T2g, ~z) (T2o , 6 ) d z  = O. 

The final expression relating the face basis {(A), (B), (C), (D), (E), (F)}, 
is the function corresponding to the face defined by the atoms 1, 2, 

where 

~eeeff f  - h o -  h o g g  - h - h o g o g  o h h -  g -  go k k k l l l  

e f e e f f  hoh  - o - g - g - h - 9 o -  hog  o -  oh - h -  go k l k k l l  

e f f e e f  ho - goh  - g h - g o h o  - g o -  g -  g h h o  k l l k k l  

e e f f e f  - h o g o -  hg hho  - go - g o h -  g - g h o  k k l l k l  

f e e f f e  go - h o g -  h g - hogo  - h o -  h -  hggo  l k k l l k  

f f e e f e  - g o h o -  9h  ggo  - ho - h og - h -  hgo  l l k k l k  

f f f e e e  - go  - 9 o h h  - g - g o h o h  ogg  - h -  ho l l l k kk  

f e f f e e  gogo  - h - h - g h o  - goh  o -  hgg  - ho  l k l l k k  

1 a 
e = - - + - -  

N, 
1 a 

f -  N, 
- b  c 

g = - - + - -  
N6 

b c 

6 

d 1 

d 1 
l -  

Nlo N. 
cos 0 

a =  
(1 + sin20 �9 $1o) ~ 

sin 0 
b =  

(1 + sin20 �9 $1o) ~ 

C = COS q~ 

where (A) 
and 3, is 

if6 

TClx 

7~6x 

g6v 

791~ 

796: 

61 

\86 / 

d = sin q~ 
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T h e  c o n d i t i o n  o f  z e r o  c o n t r i b u t i o n  o f  o rb i t a l s  c e n t r e d  on  a t o m  4, 5, a n d  6 to  (A) 

leads  to  va lues  of  0 a n d  r of  

0 = 76~ ' a n d  r = 3600 ' 

w h e n c e  e = 0 . 3 9 6 6  

f=0  
9 = 0  

h = 0.6520 

k = 0.8166 

/ = 0 .  
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